
104 8 Theoretical Background 

emitted from the cavity). The theory concerned with this specific solution (and 
therefore appropriate to describe laser light propagation) is called gaussian beam 
optics. 

8.2.1 Gaussian Beam Properties 

Figure 8.1 depicts a gaussian beam propagating along the z-axis. The intensity 
distribution is radially symmetric and of gaussian shape. 
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(8.1) 

The beam radius w(z) at a certain position z is usually defined as a drop in 
intensity to l/e2. The radius at the narrowest point of the beam is called the 
waistsize wo or focus spotsize. Indicated by the dashed lines is the curvature of 
the wavefront. 
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Figure 8.1 Gaussian spherical beam propagating in the z-direction, Carl Friedrich Gauss 

Mathematically the beam radius w(z) and radius of curvature R(z) of the wave­
fronts are given by 
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The approximation given for the irradiance profile is valid for large distances z 
from the beam waist. 

1\vo important things become evident from Eq. 8.2. First, the entire gaussian 
beam is determined by only two parameters, namely size and position of its 
waist. Second, the radius at a fixed position z is inversely proportional to the 
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waist size. In other words: "The smaller the waist - the stronger the beam 
divergence." 

The radius of curvature of the wavefront R(z) equals infinity at the waist, de­
creases with increasing z, reaching a minimum of 2zR at the Rayleigh range 
ZR = 1rw6/ .A (indicating the distance 'vhere the cross sectional area of the beam 
has doubled compared to the waist), and increases again, asymptotically ap­
proaching z. 

8.2.2 Gaussian Beam Propagation 

If a gaussian beam is transmitted through a set of circularly symmetric optical 
components aligned with the beam axis, -the gaussian beam remains a gaussian 
beam. 

Often a strong positive lens is used to focus a reasonably well collimated gaussian 
beam to a very small spot. In this case it is valid to assume that the beam will be 
focused in the focal plane of the lens1 (Fig 8.2a), which yields a simple relation 
between the diameter D of the incoming beam, focal length f of the lens and 
waist size of  the outgoing beam wo by direct application of Eq. 8.2a: 
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Figure 8.2 A well collimated gaussian beam is focused in the focal plane of a strong positive lens, 

properly described by Eq. 8.3 (a) whereas ABCD matrix formalism has to be used to describe the 

general case (b). 

In general, transmission of a gaussian beam through an arbitrary paraxial opti­
cal system can be described by a formalism similar to ABCD (or ray transfer) 
matrix analysis known from geometrical optics. Incoming and outgoing beam 
at the boundaries of an optical element are represented by their complex beam 
parameter q(z) defined as 

' 

1 As mentioned before, a gaussian beam has a maximum \vavefront curvature-radius given by 
two times the Rayleigh range (which is proportional to the square of wo). Therefore, when 
going through a strong positive lens (which itself induces a strong change in curvature of the 
wave·front) a beam with big enough wo can be treated like a plain wave which, by definition, 
gets focused in the focal plane of the lens. 
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